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a b s t r a c t

A coarse-grained model previously proposed to perform Monte Carlo simulations for several dendrimer
molecules with different topologies and chemical compositions in solution is employed now to obtain
structural properties, such as the bead density profile, the asphericity and the molecular scattering factor,
or form factor. It is also used to study the Rouse dynamics, including Rouse spring forces consistent with
the equilibrium averages of distances between connected frictional beads and hydrodynamic interactions
(Rouse–Zimm scheme). With this approach, the Rouse relaxation times and the frequency-dependent
viscoelastic modulus are calculated. Since hydrodynamic interactions are included in their preaveraged
form, the effect of the preaveraging approximation is explicitly discussed. The influence of the different
structural and topological dependence on the dendrimer static and dynamic properties is analysed and
discussed.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Dendrimers are peculiar nanomolecules of great interest from
both the basic and the applied points of view [1]. Numerical sim-
ulations are particularly useful to study the structure and dynamics
of dendrimer molecules [2]. Taking into account their chemical
structure, these molecules can be related to polymers (they are
constituted by similar repeat units), though their smaller size and
the more congested disposition of units require more specialized
simulation models even for the study of global molecular proper-
ties. Although these properties can be obtained for detailed atom-
istic models by means of Molecular Dynamic simulations [3], the
simulations actually require a huge computational effort and the
use of more simplified models is recommended. These models can
be used in conjunction with more efficient numerical techniques.
Brownian Dynamics [4] or Monte Carlo (MC) [5] simulations have
been performed for simplified models of dendrimers, giving an idea
of their general behavior.

Recently, we have proposed [6] specific coarse-grained models
useful to perform MC simulations that are able to reproduce the
main differences between the experimental molecular properties
of several types of dendrimers. The models consider units, which
we will denote here as beads, in all the branching points, and
additional units in the middle point between beads. In the
All rights reserved.
simulations, the unit positions are changed by a ‘‘single-bead jump’’
algorithm in which the distances between neighboring units and
also between neighboring beads follow realistic distributions.
These distributions of distances are obtained from Molecular
Dynamic simulations previously performed with an atomistic
model for the lowest generations. The MC models include a rigid-
spheres potential to avoid overlapping of non-neighboring units,
described in terms of a fixed minimum distance, or hard-spheres’
diameter, s. This value is assigned to give the best description of the
radius of gyration for all the different generations of each given
type of dendrimer, according to the existing experimental data. This
way, the particular quality of the solvent is implicitly taken into
account for each experimental system. Also, a bead frictional radius,
rf, is needed for the evaluation of hydrodynamic properties. It is
assigned to give the best reproduction of the experimental data of
the intrinsic viscosity for different generations of each type of
dendrimer.

Using this description, we have been able to closely reproduce
experimental data for the mean quadratic radius of gyration and
intrinsic viscosity of several dendrimers in solution [7]. Namely, we
have mimicked the properties of polyamidoamine dendrimers with
an ethylendiamine core (PAMAM–EDA) and polypropyleneimide
with a diaminobutane core (PPI–DAB) in water. We have also
reproduced the experimental data of mono-dendrons and tri-
dendrons of polybenzylether (mono-PBzE and tri-PBzE) in tetra-
hydrofuran, THF. Due to the remarkable rigidity of the spacers, or
segments between branching points, the best description of the
PBzE molecules also requires to take into account the distribution of
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angles formed by successive beads [7]. This distribution is similarly
obtained from short preliminary Molecular Dynamic runs.

The apparent agreement of our models with the available global
properties of these dendrimers in solution has induced us to report
results for other interesting properties that may be able to give
important differences related with the distinct short range struc-
tures and topologies. In particular, we have studied molecular bead
density profiles, averaged shapes, characterized by asphericity
values, and molecular scattering functions (or form factors). More-
over, we have investigated the Rouse dynamics [8], evaluating the
relaxation times and the frequency-dependent viscoelastic moduli.
With this end, we have used a modified version of the Rouse theory
in which the spring constants corresponding to the connections
between pairs of frictional beads are modified to be consistent with
their averaged internal distances. A similar scheme was previously
applied for linear and star chains with excluded volume interactions
[9]. Since these calculations consider hydrodynamic interactions
that are implemented in the preaveraged form, the influence of the
preaveraging approximation is also discussed.

2. Computational methods

The particular topology of the investigated dendrimers, together
with the definition of the generation numbers, the number of beads
associated with them and other details of the models used for their
MC study were provided in previous work [6,7].

Our statistical samples are constituted by 20 000 configurations
obtained from MC trajectories composed of 200�106 MC steps for
the coarse-grained models described in the preceding section for
the different dendrimers. Similar samples have been previously
employed [6,7] to evaluate the radius of gyration and the intrinsic
viscosity. The latter property was evaluated using the variational
Fixman method [10], which usually provides an accurate lower
bound. This method includes the consideration of real (i.e. config-
urationally fluctuating) hydrodynamic interactions. Furthermore,
we added a correction term in order to take into account the finite
viscosity of single beads [7,11]. The final results for the intrinsic
viscosity, [h]total, are summarized in Fig. 1 and, as stated in Section 1,
show an excellent agreement with most of the available experi-
mental data in solution [7].
Fig. 1. Summary of the final results for the intrinsic viscosity, [h]total, obtained with the
coarse-grained models for different dendrimers described in the text. Solid line: PA-
MAM–EDA, s¼ 5.8 Å, rf¼ 2.65 Å; dashed line: PPI–DAB, s¼ 4.0 Å, rf¼ 2.65 Å; dotted
line: mono-dendrons of PBzE, s¼ 0.5 Å, rf¼ 2.6 Å; dash–dotted line: tri-dendrons of
PBzE, s¼ 0.5 Å, rf¼ 2.8 Å. All data include the single-bead correction [7]. The PBzE
models include realistic distribution of bead angles [7]. Further details of the models
can be found in Refs. [6,7].
The asphericity of a molecule composed of N identical beads can
be estimated as [12]
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where lk is an eigenvalue of the 3� 3 matrix CS2
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tensor of mean quadratic components of the radius of gyration,
obtained form the bead positions.

If the beads are considered also as scattering units, the orien-
tationally and conformationally averaged molecular scattering
factor (or form factor) is given by
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where q is the scattering variable and Rij is the distance between
a pair of beads. C D denotes the conformational average that is
performed over the sample of configurations included in an MC
trajectory. P(q) results for PAMAM–EDA were anticipated in our
previous work [6] and we report them here only for comparison
with those obtained for the other molecules.

The Rouse theory [8,13] gives a standard description of the dy-
namic properties of chain molecules, though it is only rigorously
valid to describe the dynamics of Gaussian polymer chains. It uses
the representation of a molecule by friction points, assimilated here
to our model beads, which are connected by elastic springs. The
Rouse theory can give an approximate description of molecules
whose internal distances do not follow a Gaussian distribution,
assuming that they are similarly connected by springs with con-
sistent spring constants. This way, the molecular dynamics can still
be described in terms of N � 1 normal mode coordinates, Uk,
relaxing as e�t=sk (sk is defined as the kth relaxation time). This
assumption should be consistent with the general approximate
expression for the potential energy [8]

U=kBT ¼ 1
2

XN�1

k¼1

3U2
k=hU

2
ki (3)

The treatment applied in this work also considers preaveraged
hydrodynamic interactions, following the theoretical approach
proposed by Zimm [14]. These interactions are described by
a modified (Rotne–Prager–Yamakawa) version of the Oseen tensor
[15]. They are introduced in the N �N hydrodynamic interaction
matrix, H,

Hii ¼ 1

and

Hij ¼ erfðxÞ � 1� e�x2

p1=2x
; isj (4)

with

x ¼ ðx=6ph0Þ
D

R�1
ij

E
(5)

where CR�1
ij D is the mean reciprocal distance between beads i and j.

The bead friction coefficient, x¼ 6ph0rf, depends on the solvent
viscosity, h0, and the bead friction radius. We have employed here
the same values of rf used to calculate the intrinsic viscosity with
the Fixman method, as described in the caption of Fig. 1.

It has been shown [9] that Eq. (3) and the consideration of hy-
drodynamic interactions allow for the calculation of the reduced
relaxation times, ðskÞ* ¼ ð6kBT=xb2Þsk, where kBT is the Boltzmann



Table 1
Asphericities and bead densities (in g/cc) for different dendrimers

Molecule g A r

PAMAM–EDA 3 0.053 0.35
4 0.027 0.32
5 0.015 0.34
6 0.009 0.36
7 0.11 0.38

PPI–DAB 3 0.078 0.44
4 0.045 0.43
5 0.027 0.46
6 0.016 0.48
7 0.111 0.56

Mono-dendron PBzE 3 0.24 0.35
4 0.16 0.36
5 0.11 0.42
6 0.08 0.54
7 0.06 0.77

Tri-dendron PBzE 3 0.18 0.37
4 0.13 0.41
5 0.09 0.51
6 0.08 0.67
7 0.37 0.95
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factor and b is the mean segment length, according to the following
formula:

ðskÞ*¼ n�1
k hU

2
ki=b2; k ¼ 1; N � 1 (6)

n�1
k is the kth eigenvalue of matrix H�1. The N � 1 elements CU2

k D,
representing the mean quadratic length of the k normal coordinate,
are obtained as

hU2
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where Q is an orthogonal matrix, containing the eigenvectors of
the product matrix HA (whose N eigenvalue is zero) and Ri is the
position of bead i referred to a viscosity center that is usually ap-
proximated by the center of masses of the molecule. The averages
CRi$RjD can actually be obtained from the mean quadratic averages
of distances between beads, CR2

ijD. Finally, N�N matrix A is defined
from the topology of the spring connections between the beads,

Aii ¼ ncon;

where ncon is the number of springs directly connecting bead i with
neighboring beads,

Aij ¼ �1

for i s j and connected, and

Aij ¼ 0 (8)

for i s j and non-connected.
With this formulation, we can also evaluate the complex

viscoelastic modulus, ½GðuÞ�hiuh0½hðuÞ�, related to the frequency-
dependent viscosity, [h(u)]. In its reduced version, [h(u)]*, the latter
property can easily be evaluated from the reduced relaxation times,
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where M is the molecular weight, proportional to the number of
beads, NA is the Avogadro number and u* ¼ ðxb2=6kBTÞu. Similarly,
the reduced complex viscoelastic modulus is defined as
½GðuÞ�*hðM=RTÞ½GðuÞ� and its components are calculated as
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Therefore, we can obtain [G(u)]* if we calculate the different
averages CR�1

ij D and CR2
ijD from our MC conformational sample. The

validity of this scheme for molecules with non-Gaussian distribu-
tions of internal distances was successfully tested by comparison
with numerical results obtained with Brownian Dynamic simula-
tions (consistently using preaveraged hydrodynamic interactions)
for linear and star polymer chains with excluding volume in-
teractions [9].
3. Structural properties

Table 1 summarizes the estimated asphericities and densities
for the different dendrimers. Reference values [12] are A¼ 0.526 for
ideal (Gaussian) linear polymers and A¼ 0.183 for a 6-arms’ star
polymer, together with the obvious result A¼ 0 for spheres. Most
of the data show the expected decrease of asphericity, implying
a more globular shape, when the generation number, g, is in-
creased. This effect is related with the increase of compactness due
to a higher congestion of units. Since all asphericity values are
relatively low, we have estimated the mean density of dendrimer
mass within the molecules (or bead density in mass) assuming that
the molecules are spheres

r ¼ M=ð4p=3Þ
h
ð5=3ÞR2

g

i3=2
NA (11)

where R2
g is the mean quadratic radius of gyration. Only the more

flexible PAMAM–EDA and PPI–DAB dendrimers show a minimum
in bead density. Even in these cases, the minimum is not clearly
marked. Moreover the assumption of spherical form and the sta-
tistical errors of about 3% in the density data (based on errors of
about 1% for our previous estimations of the radius of gyration) can
lead to real uncertainties greater than the differences between
these particular data. The PBzE molecules with short and rigid
spacers show a monotonous increase in density that becomes very
remarkable for the highest generation numbers. For our highest
dendrimer generation, g¼ 7, bead density is clearly correlated with
the extension and flexibility of the spacer segments between
branching points. Thus, the PAMAM–EDA dendrimers with longer
flexible spacers are clearly less dense than the PPI–DAB molecules,
while the mono-PBzE dendrimers are denser. The more congested
tri-PBzE molecules reach even higher bead densities close to the
melt value.

In Table 1, it is observed that there is also a correlation between
spacer flexibility and asphericity. The PBzE molecules, with more
rigid spacers, exhibit higher asphericities for similar generation
number than the more flexible PAMAM–EDA and PPI–DAB mole-
cules. Moreover, PPI–DAB dendrimers show a higher asphericity
than the homologous PAMAM–EDA, with longer and more flexible
spacers. It seems that, when comparing molecules of different
types, this is the relevant effect and differences in densities are
not mainly determining the dendrimer shapes. However, when
comparing the lowest generations of PBzE mono-dendrons and
tri-dendrons, both with the same rigid spacers, it is observed that
congestion of units in the tri-dendrons tends to decrease aspher-
icity as the bead density increases. It should also be noted that
abnormal values of the asphericity are obtained for the highest
generation number, g¼ 7. We observe a noticeable increase in
asphericity, not related with any remarkable change in other
properties, except in the case of the mono-PBzE molecules. A



Fig. 3. Generalized Kratky plot of the form factor obtained with the coarse-grained
models for different dendrimers with g¼ 7. Open circles: PAMAM–EDA; open squares:
PPI–DAB; closed circles: mono-dendrons of PBzE; closed squares: tri-dendrons of
PBzE; solid line: compact sphere; dashed line: linear polymer coil with excluded
volume interactions [17].
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similar great asphericity increase has been reported in Molecular
Dynamic simulations [3] performed for PAMAM–EDA. Also, Timo-
shenko et al. reported a minimum in the asphericity at in-
termediate generation numbers in their Monte Carlo study of
a generic model for co-dendrimers [16], defined with different in-
teraction (Lennard-Jones) parameters for the external and internal
units. (In their previous study of dendrimers composed of a single
type of units, however, the asphericity showed a monotonous de-
crease with generation number [17].) The minimum suggests that
a shape change is needed to accommodate new repeating units
when the number of branches reaches a large value, due to strong
steric interactions between congested units in the outer generation
shell of the molecules.

In Figs. 2 and 3, we have represented generalized Kratky plots
[18], x5/6P(x) vs x1/2, with x ¼ q2R2

g, corresponding to the form
factors for the different dendrimer molecules with generation
numbers 5 and 7. These plots underline the main features of the
different systems. (Exponent 5/6 is consistent with assuming that
the dendrimers are immersed in a good quality solvent and they
show excluded volume effects at least in the short distance range.)
We compare our results with the theoretical result for a compact
sphere. We also include the form factor corresponding to a linear
chain with excluded volume [19]. The sphere plot shows an oscil-
latory behavior with many peaks that decrease in intensity as x
increases. It is noticed that all the systems show behaviors very
different from the linear chain curve and clearly tend to mimic the
sphere sharp maximum, indicating a significantly compact struc-
ture. Moreover, the PAMAM–EDA and PPI–DAB dendrimer plots
reproduce the smaller secondary peak of the sphere, both in posi-
tion and in intensity for g¼ 7. Furthermore, the position of the
sphere’s third peak is also suggested. In the g¼ 5 case, these den-
drimers show a good reproduction of the main maximum and
exhibit a second peak whose position is also in agreement with the
sphere model. This implies that the inner structure of the den-
drimers is very close to a compact sphere for g¼ 7 and it is close to
this model even for the g¼ 5 molecules that have smaller densities
of beads. We should also note that a satisfactory comparison be-
tween our results for PAMAM–EDA and some experimental data
[20] for the g¼ 5 in methanol was performed in previous work [6].

However, the PBzE molecules show less homogeneous struc-
tures, in spite of their higher densities. Although the first maximum
is again closely reproduced, the values are higher than the sphere
Fig. 2. Generalized Kratky plot of the form factor obtained with the coarse-grained
models for different dendrimers with g¼ 5. Open circles, PAMAM–EDA; open squares:
PPI–DAB; closed circles: mono-dendrons of PBzE; closed squares: tri-dendrons of
PBzE; solid line: compact sphere; dashed line: linear polymer coil with excluded
volume interactions [17].
results beyond the maximum position and there is not any in-
dication of secondary peaks. This tendency also correlates to the
remarkable higher asphericities shown by the PBzE molecules,
discussed above, and it is more marked for the less dense mono-
dendrons. For g¼ 5 (molecule with smaller radius of gyration, i.e.
with a greater q for a given value of x in the graphic) the results tend
to increase more abruptly for x> 4, indicating that the monitored
distances are within the coarse-grained beads in this x range. Some
small-angle neutron scattering experimental data of mono-PBzE
(g¼ 3–5) in deuterated THF have been reported [21] and their
standard, q2P(x) vs x, Kratky plots show a very pronounced maxi-
mum and no further evidence of structure for higher q. Although
the significant statistical noise of the data in the q-high region
hinders a precise comparison, it looks that the plateau in this region
always lies considerably higher than the sphere oscillations, in
qualitative agreement with the present results.

In Fig. 4 we show the bead density profiles r(Rc) (Rc is the dis-
tance between beads and the center of masses) corresponding to
the different dendrimers with g¼ 5. In Fig. 5 we have also plotted
Fig. 4. Total bead density profiles (in mass) obtained with the coarse-grained models
for different dendrimers with g¼ 5. Solid line: PAMAM–EDA; dashed line: PPI–DAB;
dotted line: mono-dendrons of PBzE; dash–dotted line: tri-dendrons of PBzE.



Fig. 5. Normalized outer shell bead density profiles (in mass), (N/Nout)rout(Rc), ob-
tained with the coarse-grained models for different dendrimers with g¼ 5. Solid line:
PAMAM–EDA; dashed line: PPI–DAB; dotted line: mono-dendrons of PBzE; dash–
dotted line: tri-dendrons of PBzE.

Table 2
Reduced first Rouse relaxation time for different dendrimers

Molecule g (s1)*

PAMAM–EDA 3 135
5 649
7 3380

PPI–DAB 3 72.8
5 303
7 1200

Mono-dendron PBzE 3 91.9
5 321
7 792

Tri-dendron PBzE 3 109
5 339
7 865

Fig. 6. sk/s1 obtained with the coarse-grained models for different dendrimers with
g¼ 7. Open circles: PAMAM–EDA; open squares: PPI–DAB; closed circles: mono-den-
drons of PBzE; closed squares: tri-dendrons of PBzE. Solid line: Results for an ideal
linear polymer (Gaussian coil) in the non-draining limit.
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rout(Rc), where subscript out denotes beads belonging to the outer
generation shell. (This density is appropriately normalized to per-
form direct quantitative comparisons with the total bead density
values.) PAMAM-EDA and PPI–DAB show a typical shell structure,
with bead densities showing several peaks of similar heights at
various distances in the inner core. Furthermore, it can be observed
that the peaks are wider in PAMAM–EDA, due to the larger
extension of its spacers and the higher value of the overlapping
distance parameter s. The outer shell bead densities have a clear
maximum for high values of Rc, indicating that the end beads are
mainly located in the external part of the molecules. This is in
agreement with MD simulations trying to mimick PAMAM–EDA
molecules in low or medium pH solutions [3]. (This experimental
conditions also correspond to the radius of gyration data repro-
duced by the present simulations).

However, the mono-dendrons and tri-dendrons of PBzE show
important qualitative differences from this scheme. Their total bead
densities decrease in much of the range of values of Rc, indicating
less homogeneous structures, in agreement with the conclusion
obtained from the Kratky plots. Moreover, although the normalized
value of the outer shell densities is clearly higher than the total
density at high Rc, the rout(Rc) profiles are constant or slightly
decreasing in the molecule core, which indicates a more important
backfolding of the end beads. This behavior is typical of denser,
though not necessarily more homogeneous, structures. For in-
stance, the MD simulations of PAMAM–EDA in high pH solutions
show total bead density profiles with a prominent peak followed by
a decrease near the core and secondary peaks [3]. From the theo-
retical point of view, it can be argued that denser dendrimers follow
more closely the decreasing density behavior predicted by Boris
and Rubinstein self-consistent field calculations [22], while less
dense dendrimers are more likely to be organized in shells. In the
particular case of the PBzE molecules, the density profile decrease is
associated with the changes in the parameter values and the in-
troduction of further structural details that are needed for a better
reproduction of the global experimental data of radius of gyration
and viscosity [7].

3.1. Rouse dynamics

The dendrimer dynamics can be understood through its de-
scription in terms of Rouse modes and relaxation times, including
hydrodynamic interactions. We should remark that the Rouse
dynamics of dendrimers composed by Gaussian springs without
hydrodynamic interactions have been previously reported [23].
Moreover, the dynamics of a general freely jointed model of den-
drimers with preaveraged hydrodynamic interactions have also
been investigated [24]. A similar study has been performed con-
sidering excluded volume interactions through a self-consistent
minimization of the intramolecular free energy [25]. This minimi-
zation takes into account the deviations with respect to the
dynamic description based on Gaussian springs. As described in the
preceding section, our calculations include the description of
realistic distributions of bond distances and angles and also of
interactions between non-bonded beads.

Our results for the reduced first (highest) Rouse relaxation times
corresponding to some of the different dendrimers according to our
coarse-grained model are shown in Table 2. The variation of these
values with the generation number for a given type of dendrimer
is mainly related with the increase of the number of beads and
molecular volume. Comparing different dendrimers with similar
N, higher relaxation times correspond to lower bead densities,
remarking their main dependence on the global molecule size. A
slower growth of the molecule size with g, associated with the
remarkable increase in density, explains why we observe smaller
differences in the values of (s1)* for increasing values of g in the case
of PBzE molecules.

In Fig. 6 we plot sk/s1 for the different molecules with g¼ 7 and
perform a comparison with the values provided by the Rouse–
Zimm scheme [26], skz½k3=2ð1� 1=2pkÞ� for an ideal linear poly-
mer (Gaussian coil) in the non-draining limit. It can be observed



Fig. 8. log–log plots of the real (lower curves on the left side) and imaginary (upper
curves on the left side) components of [G(uR)]* obtained with the coarse-grained
models for different dendrimers with g¼ 3. Solid line: PAMAM–EDA; dashed line: PPI–
DAB; dotted line: mono-dendrons of PBzE; dash–dotted line: tri-dendrons of PBzE.
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that the relaxation time spectra of the dendrimers are significantly
different from the linear polymer chain. The dendrimer data show
a remarkable slower variation with k and many degenerate (or
close-to-degenerate) values are associated to the different types of
branching points, as also shown in previous studies with generic
dendrimer models [23–25]. The higher values of sk/s1 obtained for
the long and intermediate relaxation times of the dendrimers imply
higher viscoelasticity for dendrimer molecules than for linear
polymer chains of equivalent size and density, due to the presence
of many branching points. Also, there are important differences
between the results obtained for the tri-dendron of PBzE, with
a higher bead density and more rigid spacers, and the PAMAM–EDA
or PPI–DAB dendrimers, with more branching points or beads, but
less dense and with flexible spacers. The tri-dendron molecule
shows a slow decay with k for low values of k, which is related to its
long time behavior due to its higher density and rigidity. This decay,
however, significantly increases for higher values of k. PAMAM–
EDA shows an initial faster decay but there is a wide plateau of
degenerate values for intermediate k, range for which sk/s1 is ac-
tually similar, or even greater, than that in the tri-dendron case.
This implies a peculiar dynamics at the transition from long to short
times for the PAMAM–EDA molecule, also observed for PPI–DAB.
This molecule exhibits values of sk/s1 slightly higher than those of
PAMAM–EDA in the whole range of values of k, due to its greater
bead density and more rigid spacers. Less dense mono-dendrons of
PBzE show an initial decay close to tri-dendrons, remarking the
influence of rigidity in the long time range, but the decay becomes
faster at intermediate k as in the tri-dendron case, giving values of
sk/s1 significantly smaller than the rest of molecules.

Figs. 7–9 summarize the log–log variation of the reduced com-
plex viscoelastic modulus with frequency, calculated with the
Rouse–Zimm scheme, for the investigated dendrimers. In these
plots, frequency is expressed as

uRhðMh0½h�=RTÞu ¼ ½h�*u* (12)

where

½h�*h½hðu ¼ 0Þ�*¼
XN�1

k¼1

ðskÞ* (13)

According to Eqs. (10), (12) and (13), curves representing the
imaginary modulus should converge at low frequency showing
Fig. 7. log–log plots of the real (lower curves on the left side) and imaginary (upper
curves on the left side) components of [G(uR)]* obtained with the coarse-grained
model for different generations of PBzE tri-dendrons. Solid line: g¼ 3; dashed line:
g¼ 5; dotted line: g¼ 7.
linear increase with slope equal to 1 so that the precise location of
their deviation from linearity when frequency increases can be
easily appreciated for the different molecules. The deviation occurs
(for both the real and the imaginary moduli) when u*ðs1Þ*y1 or
uRy½h�*=ðs1Þ*. The real modulus at low frequencies should show
a slope equal to 2 for all molecules, with absolute values depending
on

PN�1
k¼1

�
ðskÞ*=½h�*

	2. Ratio ðskÞ*=½h�* tends to slowly decrease
when N increases, because of the contribution of additional shorter
relaxation times to [h]*, see Eq. (13). Consequently, higher values of
N usually imply smaller values of the real modulus. Moreover, the
ðs1Þ*=½h�* decrease implies that a significant deviation of both
moduli from linearity will only be noticed for higher values of uR.
This also determines the location order of the different imaginary
module curves at intermediate frequencies.

Eq. (10) shows that the imaginary modulus curves finally de-
crease in the high-frequency range, while the real modulus curves
approach to an asymptotic limit value, N� 1. However, it should be
also remarked that the present theoretical model is expected to fail
at high frequencies unless realistic constraints substitute the spring
Fig. 9. log–log plots of the real (lower curves on the left side) and imaginary (upper
curves on the left side) components of [G(uR)]* obtained with the coarse-grained
models for different dendrimers with g¼ 7. Solid line: PAMAM–EDA; dashed line: PPI–
DAB; dotted line: mono-dendrons of PBzE; dash–dotted line: tri-dendrons of PBzE.



Table 3
Ratio between the preaveraged and the correct conformational intrinsic viscosity for
different dendrimers

Molecule g [h]cf/[h]

PAMAM–EDA 3 0.729
5 0.644
7 0.544

PPI–DAB 3 0.766
5 0.562
7 0.432

Mono-dendron PBzE 3 0.855
5 0.594
7 0.325

Tri-dendron PBzE 3 0.733
5 0.490
7 0.257
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constants to describe the molecule in the short time range (rigid
connections). These constraints prevent the imaginary (or loss)
modulus, G00(u), from decreasing. Actually, the high-frequency de-
crease and the associated plateau for the real (or storage) modulus,
[G0(u)], are never found in real molecules since they are features
associated with the consideration of a finite number of elastic
springs [27,28].

Fig. 7 compares the results obtained for the tri-dendrons of PBzE
with several generation numbers. It is observed that the increase in
g leads to some decrease in the real modulus at low frequencies and
to a later departure of the linear behavior for both the real and the
imaginary moduli. These features are associated with the increase
of N discussed in the preceding paragraph. Consequently, the
maximum in the imaginary modules and the curve crossing also
appear at higher frequencies, widening the range of validity of
the Rouse model. We can also note that the real modulus curves
corresponding to different dendrimers should intercept at in-
termediate frequencies to invert their order and reach their pre-
dicted N� 1 limit values.

Fig. 8 shows the curves for different dendrimers and g¼ 3. We
can notice similar curves for PAMAM–EDA, PPI–DAB and the PBzE
tri-dendron. However, the mono-dendrons of PBzE show a signifi-
cantly higher value of the real module at low frequencies and also
earlier curvature. The peculiar behavior of the PBzE mono-den-
drons is surely due to the smaller number of beads, or branching
points, of this molecule with respect to the other three cases.
PAMAM–EDA and PPI–DAB have the same number of branching
points for a given g and the number of beads is slightly higher but
close to the value corresponding to the PBzE tri-dendrons for g¼ 3.
Therefore, the real modulus of the latter molecule lies above
the PAMAM–EDA curve at low frequencies. Finally, the real mod-
ulus corresponding to PPI–DAB lies slightly below the PAMAM–EDA
at low frequencies. It seems that, for similar number of beads,
this order is determined inversely to the bead densities. As in
the cases shown in Fig. 7, the real modulus curves intercept at
intermediate frequencies to invert their order and reach their
asymptotic values.

Fig. 9 contains a similar comparison between the different
dendrimers for g¼ 7. As an obvious difference with the g¼ 3 case, it
can be observed that the deviation from linearity, [G0(u)]* maxi-
mum and curve crossing are located at considerably higher fre-
quencies, because of the increase in the number of beads. For g¼ 7,
the number of branching points of both mono-dendrons and tri-
dendrons of PBzE becomes more similar (though tri-dendrons
always have more beads than mono-dendrons for any given g).
This explains the approach of the mono-dendron and tri-dendron
curves with respect to the g¼ 3 case. N is in both cases smaller than
that for the PAMAM–EDA and PPI–DAB dendrimers. However, the
PAMAM–EDA and PPI–DAB dendrimers show greater values of the
real modulus than the PBzE molecules at low frequencies. These
low frequency values are now ordered inversely to the different
bead densities.

Moreover, the PAMAM–EDA and PPI–DAB dendrimers and the
mono-dendrons of PBzE exhibit an earlier deviation from linearity
and cross the tri-dendron real modulus curves at intermediate
frequencies. The deviation from linearity at higher frequencies and
the behavior at intermediate frequencies seem to be mainly con-
ditioned by both the spacer rigidity and the density. The real and
imaginary curves corresponding to the less dense and more flexible
PAMAM–EDA molecule cross the corresponding PPI–DAB curves
in the intermediate frequency range. The curve shapes of the
PAMAM–EDA and PPI–DAB dendrimers and, in a lesser extension,
of the mono-dendrons of PBzE, somehow resemble the behavior
previously reported for highly branched star chains, with an earlier
and more extended approach of the real and imaginary parts before
they cross [9]. Similar shapes have also been obtained with
a general dendrimer model [25]. On the other hand, the more rigid
and denser tri-dendrons of PBzE exhibit smoother curves. They are
more similar to the curves obtained for low-g dendrimers and also
to those previously reported for linear polymer chains [29] and
dendrimers with Gaussian spring connections [24], avoiding the
earlier deviation from linearity.

We should finally discuss the consequences of using of pre-
averaged hydrodynamic interactions in the Rouse–Zimm scheme.
This approximation has been shown to give important quantitative
differences in the description of the (zero frequency) intrinsic vis-
cosity with respect to treatments [2,10,30] that include real (fluc-
tuating) hydrodynamic interactions. Since our results for the
intrinsic viscosity, shown in Fig. 1, were calculated by using the
variational Fixman method where fluctuating hydrodynamic in-
teractions are introduced, we can evaluate the influence of using
preaveraged hydrodynamic interactions for the particular den-
drimers studied in this work. Table 3 shows the ratio between the
zero frequency intrinsic viscosity obtained with fluctuating
hydrodynamic interactions (conformational contribution to the
intrinsic viscosity; denoted with subscript cf) and with the Rouse–
Zimm approach based on the preaveraging approximation (no
subscript), [h]cf/[h], for different dendrimers. It is verified that, from
the quantitative point of view, the preaveraging approximation is
particularly inaccurate for the dendrimers with higher bead den-
sity. This is consistent with our previous results for linear chains
and stars [31]. The results showed that preaveraging is a poorer
approximation for molecules with high density of beads in the
molecule core.

Unfortunately, it is not easy to include fluctuating hydrodynamic
interactions in the theoretical scheme to estimate the frequency-
dependent viscosity, i.e. the viscoelastic modulus at finite
frequencies, from an equilibrium sample. In this case, dynamic
simulations are prescribed to obtain a slowly decaying stress time-
correlation function [29,32]. Brownian Dynamic simulations have
been previously performed for this purpose for linear, star and ring
flexible polymers without intramolecular interactions and results
for the reduced viscoelastic modulus have been reported [29].
These results showed that the preaveraging approximations have
a similar influence for both [G0(u)] and [G00(u)]. It was verified that
[G0(u)]cf/[G0(u)] and [G00(u)]cf/[G00(u)] practically remain constant in
the range of frequency for which both moduli show a linear in-
crease in a log–log plot.

Preaveraged and fluctuating hydrodynamic curves are co-
incident for high frequencies where the present model is un-
realistic, since they yield identical values of the stress correlation
function at t¼ 0 [32]. Consequently, the preaveraged results actu-
ally give a good qualitative description of the dynamic moduli
behavior in the range of low and moderate frequencies where the
Rouse model is adequate, though important quantitative differ-
ences are shown with respect to the real values, and these
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differences depend on the particular molecular topology. De-
viations from the log–log linear increase occur at lower frequency
values when the preaveraging approximation is considered [29].
Nevertheless, the consistent use of preaveraging for different
molecules in the present work may help to understand how the
topological and structural details also influence these deviations.
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